L’utilisation au départ de la version internationale conditionnelle du MEDAF avec prix du risque constant est incontournable même s’il ne permet pas de saisir tous les déterminants de la dynamique du prix du risque. Ce faisant, une spécification MEDAFI conditionnel avec prix du risque constant est critiquable à plusieurs niveaux comme l’a mentionné à juste titre Harvey (1991). En plus, le MEDAFI avec prix de risque constant ne résiste pas lorsqu’ il est confronté aux observations réelles (ex post).
Rappelons que le MEDAFI conditionnel à prix de risque constant s’exprime par : Supposer que le prix de risque est constant revient à supposer que la pente de la droite de marché des capitaux est constante et ne contredit pas le fait que les déterminants de cette pente peuvent varier suivants les dates [voir Santis et Gérard (1997)]. Par conséquent, on se doit logiquement dans une seconde étape, de faire varier le prix du risque de covariance suivant le facteur dates. Pour éviter le problème largement débattu dans la littérature financière quant à la possibilité du prix du risque de prendre des valeurs négatives, de nombreux auteurs dont Carrieri (2001), De Santis et Gérard (1997,1998) et de Santis et al (2003) ont modélisé le prix de risque de covariance en fonction de variables économiques. Arouri Mohamed El Hedi s’est inspiré de ces travaux pour déceler une liste d’instruments économiques à l’utiliser comme vecteur d’information. Ce vecteur informationnel noté Z que nous reproduisons dans ce travail est un sous ensemble de l’état de l’univers Ω inobservable par nature. Il est composé des instruments économiques suivants : – La moyenne mobile d’ordre 3 de l’indice MSCI, MMSCI ; – Une prime de terme mesurée par la différence entre un taux d’intérêt court ( Bon de trésorerie américain à trois mois ) et un taux long (bon du trésor gouvernemental américain à10 ans), PDT ; – Une prime de défaut mesurée par l’écart entre le rendement des obligations notées Baa et celles notées Aaa par l’agence Moody’s, PDD ; – L’inflation calculée à partir de l’indice des prix à la consommation américain, INF ; – La croissance de la production industrielle américain ; PIN. Pour rendre le modèle robuste nous incluons aussi les deux variables dichotomiques suivantes : – Une variable muette qui vaut 1 en octobre 1987 et 0 à toutes les autres dates. Cette variable est censée capter l’effet du Krach boursier d’octobre 1987, OCT ; – Une variable muette qui prend 1 en janvier et 0 ailleurs, JAN. En définitive le prix du risque de covariance conditionnel est donné par :